
First homework assignment. Due at 12:15 on 22 September 2016.

Homework 1. We roll two dices. X is the result of one of them and Z the sum of the results. Find
E [X|Z].

Homework 2. Let X be a r.v.. Assume that Y another r.v. for which P (Y = 0 or Y = 1) = 1. Prove
that Y ∈ σ(X) iff there exists a ϕ : R→ R Borel Measurable function such that Y = ϕ(X).

Homework 3. Let X and Y be random variables on the same probability space. Prove that X and Y are
independent iff for every ϕ : R→ R bounded measurable functions we have

E [ϕ(Y )|X] = E [ϕ(Y )] .

Homework 4. Assume that X, Y are jointly continuous r.v. with joint distribution function f(x). Prove
that

E [Y |X] = E [Y |σ(X)] =

∫
R
yf(X, y)dy∫

R
f(X, y)dy .

Homework 5. Let Y ∈ σ(G). Prove that

E [X|G] ≥ Y ⇐⇒ ∀A ∈ G E [X · 1A] ≥ E [Y · 1A] .

Homework 6. Let X, Y ∈ L1(Ω,F ,P) satisfying

E [X|Y ] = Y and E [Y |X] = X

Show that P(X = Y ) = 1.

Homework 7. Prove the general version of Bayes’s formula: Given the probability space (Ω,F ,P) and let
G be a sub-σ-algebra of F . Let G ∈ G. Show that

P (G|A) =

∫
G
P (A|G) dP∫
Ω
P (A|G) dP (1)

Homework 8. Prove the conditional variance formula

Var(X) = E [Var(X|Y )] + Var (E [X|Y]), (2)

where Var(X|Y ) = E [X2|Y ]− (E [X|Y ])2.

Homework 9. Let X1, X2, . . . iid r.v. and N is a non-negative integer valued r.v. that is independent of
Xi, i ≥ 1. Prove that

Var
(

N∑
i=1

Xi

)
= E [N ] Var(X) + (E [X])2Var(N). (3)

Second homework assignment. Due at 12:15 on 29 September 2016.

Homework 10. Let Xt be a Poisson(1). That is a Poisson process with rate λ = 1. (See Durrett’s book
p. 139 if you forgot the definition.) Find: E [X1|X2] and E [X2|X1].

Homework 11. Construct a martingale which is NOT a Markov chain.

Homework 12. For every i = 1, . . . ,m let
{
M (i)

n

}∞
n=1

be a sequence of martingales w.r.t. {Xn}∞n=1. Show
that

Mn := max
1≤i≤n

M (i)
n

is a submartingal w.r.t. {Xn}.
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Homework 13. Let ξ1, ξ2, . . . standard normal variables. (Recall that in this case the moment generating
function M(θ) = E

[
eθξi

]
= eθ2/2.) Let a, b ∈ R and

Sn :=
n∑
k=1

ξk and Xn := eaSn−bn

Prove that

(a) Xn → 0 a.s. iff b > 0

(b) Xn → 0 in Lr iff r < 2b
a2 .

Homework 14. Let Sn := X1 + · · ·+Xn, where X1, X2, . . . are iid with X1 ∼ Exp(1). Verify that

Mn := n!
(1 + Sn)n+1 · e

Sn

is a martingale w.r.t. the natural filtration Fn.

Third homework assignment. Due at 12:15 on 6 October 2016.

Homework 15. Prove that the following two definitions of λ-system L are equivalent:

Definition 1. (a) Ω ∈ L.

(b) If A,B ∈ L and A ⊂ B then B \ A ∈ L

(c) If An ∈ L and An ↑ A (that is An ⊂ An+1 and A = ∪∞n=1An) then A ∈ L.

Definition 2. (i) Ω ∈ L.

(ii) If A ∈ L then Ac ∈ L.

(iii) If Ai ∩ Aj = ∅, Ai ∈ L then ∪∞i=1Ai ∈ L.

Homework 16. There are n white and n black balls in an urn. We pull out all of them one-by-one without
replacement. Whenever we pull:

• a black ball we have to pay 1$,

• a white ball we receive 1$.

Let X0 := 0 and Xi be the amount we gained or lost after the i-th ball was pulled. We define

Yi := Xi

2n− i , for 1 ≤ i ≤ 2n− 1, and Zi := X2
i − (2n− i)

(2n− i)(2n− i− 1) for 1 ≤ i ≤ 2n− 2.

(a) Prove that Y = (Yi) and Z = (Zi) are martingales.

(b) Find Var(Xi) =?

Homework 17. Let X, Y be two independent Exp(λ) r.v. and Z := X+Y . Show that for any non-negative

measurable h we have E [h(X)|Z] = 1
Z

Z∫
0
h(t)dt.

Homework 18. Let X1, X2, . . . be iid r.v. with P (Xn = −n2) = 1
n2 and P

(
Xn = n2

n2−1

)
= 1 − 1

n2 . Let
Sn := X1 + · · ·+Xn. Show that

(a) lim
n→∞

Sn/n =∞.
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(b) {Sn} is a martingale which converges to ∞ a.s..

Homework 19. (This was withdrawn on this week and it is reassigned next week.) A player’s winnings
per unit stake on game n are ξn, where {ξ}∞n=1 are i.i.d. r.v.

P (ξn = 1) = p and P (ξn = −1) = q := 1− p,

where surprisingly, p ∈ (1/2, 1), that is p > q. That is with probability q < 1/2 the player losses her stake
and with probability p she gets back twice of her stake. Let Cn be the player’s stake on game n. We assume
that Cn is previsible, that is Cn+1 ∈ Fn := σ (ξ1, . . . , ξn) for all n. Further, we assume that 0 ≤ Cn ≤ Yn−1,
where Yn−1 is the fortune of the player at time n. We call α := p log p + q log q + log 2 the entropy. Prove
that

(a) logZn − nα is a supermartingale. This means that the rate of winnings E [log Yn − log Y0] ≤ nα

(b) There exists a strategy for which logZn − nα is a martingale.

Fourth homework assignment. Due at 12:15 on 13 October 2016.

Homework 20. (Reassigned from last week) A player’s winnings per unit stake on game n are ξn, where
{ξ}∞n=1 are i.i.d. r.v.

P (ξn = 1) = p and P (ξn = −1) = q := 1− p,

where surprisingly, p ∈ (1/2, 1), that is p > q. That is with probability q < 1/2 the player losses her stake
and with probability p she gets back twice of her stake. Let Cn be the player’s stake on game n. We assume
that Cn is previsible, that is Cn+1 ∈ Fn := σ (ξ1, . . . , ξn) for all n. Further, we assume that 0 ≤ Cn ≤ Yn−1,
where Yn−1 is the fortune of the player at time n. We call α := p log p + q log q + log 2 the entropy. Prove
that

(a) log Yn − nα is a supermartingale. This means that the rate of winnings E [log Yn − log Y0] ≤ nα

(b) There exists a strategy for which log Yn − nα is a martingale.

Homework 21. Let X,Z be Rd-valued r.v. defined on the (Ω,F ,P). Assume that
E
[
eit·X+is·Z

]
= E

[
eitX

]
· E

[
eisZ

]
, ∀s, t ∈ Rn. Prove that X,Z are independent.

Homework 22. Let X ∼ N (µµµ,Σ) in Rn. Let X1 := (X1, . . . , Xp) and X2 := (Xp+1, . . . , Xn). Let Σ, Σ1
and Σ2 the covariance matrix of X, X1 and X2 respectively. Prove that X1 and X2 are independent if and
only if

Σ =
(

Σ1 0
0 Σ2

)
.

Homework 23. Let Y ∼ N (µµµ,Σ) and let B be a non-singular matrix. Find the distribution of X = B ·Y.

Homework 24. Let Y ∼ N (µµµ,Σ) in R2, Y = (Y1, Y2) and let a1, a2 ∈ R. Find the distribution of
a1Y1 + a2Y2.

Fifth homework assignment. Due at 12:15 on 20 October 2016.

Homework 25. Construct a random vector (X, Y ) such that both X and Y are one-dimensional normal
distributions but (X, Y ) is NOT a bivariate normal distribution.

Homework 26. Let X = (X1, . . . , Xd) be standard multivariate normal distribution. Let Σ be an n × n
positive semi-definite, symmetric matrix. and let µµµ ∈ Rd. Prove that there exists an affine transformation
T : Rd → Rd, such that T (X) ∼ N (µµµ,Σ).
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Homework 27. Let X be the height of the father and Y be the height of the son in sample of father-son
pairs. Then (X, Y ) is bivariate normal. Assume that

E [X] = 68 (in inches) , E [Y ] = 69, σX = σY = 2, ρ = 0.5,

where ρ is the correlation of (X, Y ). Find the conditional distribution of Y given X = 80 (6 feet 8 inches).
(That is find the parameters in Y ∼ N (µY , σ2(Y )).)

Homework 28 (Extension of part (iii) of Doob’s optional stopping Theorem). Let X be a supermartingale.
Let T be a stopping time with E [T ] <∞.(Like in part (iii) of Doob’s optional stopping Theorem.) Assume
that there is a C such that

E [|Xk −Xk−1||Fk−1] (ω) ≤ C, ∀k > 0 and for a.e. ω.

Prove that E [XT ] ≤ E [X0].

Homework 29. Let Xn be a discrete time birth-death process with probabilities with transition probabil-
ities

p(i, i+ 1) = pi, p(i, i− 1) = 1− pi =: qi, p0 = 1

We define the following function:

g : N→ R+, g(k) := 1 +
k−1∑
j=1

j∏
i=1

qi
pi

,

(a) Prove that Zn := g(Xn) is a martingale for the natural filtration.

(b) Let 0 < i < n be fixed. Find the probability that a process started from i gets to n earlier than to 0.

Sixth homework assignment. Due at 12:15 on 3 November 2016.

Homework 30. Let {εn} be an iid sequence of real numbers satisfying P (εn = ±1) = 1
2 . Show that ∑

n
εnan

converges alsmost surely iff
∞∑
k=1

a2
n <∞.

Homework 31. Let X = (Xn) be an L2 random walk that is a martingale. Let σ2 be the variance of the
k-th increment Zk := Xk −Xk−1 for all k. Prove that the quadratic variance is An = nσ2.

Homework 32. Prove the assertion of Remark 5.6 from File C.

Homework 33. Let M = (Mn) be a martingale with M0 = 0 and |Mk −Mk−1| < C for a C ∈ R. Let
T ≥ 0 be a stopping time and we assume that E [T ] ≤ ∞. Let

Un :=
n∑
k=1

(Mk −Mk−1)2 · 1T≥k, Vn := 2 ∑
1≤i<j≤n

(Mi −Mi−1) · (Mj −Mj−1) · 1T≥j.

U∞ :=
∞∑
k=1

(Mk −Mk−1)2 · 1T≥k, V∞ := 2 ∑
1≤i<j

(Mi −Mi−1) · (Mj −Mj−1) · 1T≥j. Prove that

(a) M2
T∧n = Un + Vn and M2

T = U∞ + V∞.

(b) Further, if E [T 2] <∞ then lim
n→∞

Un = U∞ a.s. and E [U∞] <∞ and E [Vn] = E [V∞] = 0.

(c) Conclude that lim
n→∞

E [M2
T∧n] = E [M2

T ].

Homework 34 (Wald equalities). Let Y1, Y2, . . . be iid r.v. with Yi ∈ L1. Let Sn := Y1 + · · ·+ Yn and we
write µ := E [Yi]. Given a stopping time T ≥ 1 satisfying: E [T ] <∞. Prove that
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(a)
E [ST ] = µ · E [T ] . (4)

(b) Further, assume that Yi are bounded (∃Ci ∈ R s.t. |Yi| < Ci) and E [T 2] <∞. We write σ2 := Var(Yi).
Then

E
[
(ST − µT )2

]
= σ2 · E [T ] . (5)

Hint: Introduce an appropriate martingale and apply the result of the previous exercise.

Sevens homework assignment. Due at 12:15 on 10 November 2016.

Homework 35 (Branching Processes). You might want to recall what you have learned about Bransching
Processes. (See File C of the course "Stochastic Processes".) A Branching Process Z = (Zn)∞n=0 is defined
recursively by a given family of Z+ valued iid rv.

{
X

(n)
k

}∞
k,n=1

as follows:

Z0 := 1, Zn+1 := X
(n+1)
1 + · · ·+X

(n+1)
Zn

, n ≥ 0.

Let µ = E
[
X

(n)
k

]
and Fn = σ(Z0, Z1, . . . Zn). We write f(s) for the generating function. that is

f(s) =
∞∑
`=0

P
(
X

(n)
k = `

)
︸ ︷︷ ︸

p`

·s` for any k, n.

Further, let
{extinction} := {Zn → 0} = {∃n, Zn = 0} {explosion} = {Zn →∞} .

let q := P ([extinction]) :=. Recall that we learned that q is the smaller (if there are two) fixed point of
f(s). That is q is the smallest solution of f(q) = q. Prove that

(a) E [Zn] = µn. Hint: Use induction.

(b) For every s ≥ 0 we have E
[
sZn+1|Fn

]
= f(s)Zn . Explain why it is true that qZn is a martingale and

lim
n→∞

Zn = Z∞ exists a.s.

(c) Let T := min {n : Zn = 0}. (T =∞ if Zn > 0 always.)

(d) Prove that q = E
[
qZT

]
= E

[
qZ∞ · 1T=∞

]
+ E

[
qZT · 1T<∞

]
.

(e) Prove that E
[
qZ∞ · 1T=∞

]
= 0.

(f) Conclude that if T (ω) =∞ then Z∞ =∞.

(g) Prove that
P (extinction) + P (explosion) = 1. (6)

Homework 36 (Branching Processes cont.). Here we assume that

µ = E
[
X

(n)
k

]
<∞ and 0 < σ2 := Var(X(n)

k ) <∞.

Prove that

(a) Mn = Zn/µ
n is a martingale for the natural filtration Fn

(b) E
[
Z2
n+1|Fn

]
= µ2Z2

n + σ2Zn. Conclude that

M is bounded in L2 ⇐⇒ µ > 1.
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(c) If µ > 1 then M∞ := lim
n→∞

Mn exists (in L2 and a.s.) and

Var(M∞) = σ2

µ(µ− 1) .

Homework 37 (Branching Processes cont.). Assume that q = 1 (q was defined in the one but last exercise
as the probability of extinction). Prove that Mn = Zn/µ

n is NOT a UI martingale.

Eights homework assignment. Due at 12:15 on 24 November 2016.

Homework 38. Let X1, X2, . . . be iid rv. with continuous distribution distribution function. Let Ei be
the event that a record occurs at time n. That is E1 := Ω and En := {Xn > Xm, ∀m < n}. Prove that
{Ei}∞i=1 independent and P (Ei) = 1

i
.

Homework 39 (Continuation). Let E1, E2, . . . be independent with P (Ei) = 1/i. Let Yi := 1Ei
and

Nn := Y1 + · · ·+ Yn. (In the special case of the previous homework, Nn is the number of records until time
n.) Prove that

(a)
∞∑
k=1

Yk−1/k
log k converges almost surely.

(b) Using Krocker’s Lemma conclude that lim
n→∞

Nn

logn = 1 a.s..

(c) Apply this to the situation of the previous exercise to get an estimate on the number of records until
time n.

Homework 40. Let C be a class of rv on (Ω,F ,P). Prove that the following assertions (1) and (2) are
equivalent:

1. C is UI.

2. Both of the following two conditions hold:

(a) C is L1-bounded. That is A := sup {E [|X|] : X ∈ C} <∞ AND
(b) ∀ε > 0, ∃δ > 0 s.t.

F ∈ F and P (F ) < δ =⇒ E [|X|;F ] < ε.

Homework 41. Let C and D be UI classes of rv.. Prove that C + D := {X + Y : X ∈ C and Y ∈ D} is
also UI. Hint: use the previous exercise.

Homework 42. Let C be a UI family of rv.. Let us define
D := {Y : ∃X ∈ C, ∃G sub-σ-algebra of F s.t. Y = E [X|G]}. Prove that D is also UI.

Ninth homework assignment. Due at 12:15 on 1 December 2016.

Homework 43. Let X1, X2, . . . be iid. rv. with E [X+] = ∞ and E [X−] < ∞. (Recall X = X+ − X−
and X+, X− ≥ 0.) Use SLLN to prove that Sn/n → ∞ a.s., where Sn := X1 + · · · + Xn. Hint: For
an M > 0 let XM

i := Xi ∧ M and SMn := XM
n + · · · + XM

n . Explain why lim
n→∞

SMn /n → E
[
XM
i

]
and

lim inf
n→∞

Sn/n ≥ lim
n→∞

SMn /n.

Homework 44. Let X1, X2, . . . be iid rv with E [|Xi|] <∞. Prove that E [X1|Sn] = Sn/n. (This is trivial
intuitively from symmetry, but prove it with formulas.)

Homework 45. Let C be a class of random variables of (Ω,F ,P). Then the following condition implies
that C is UI:

If ∃p > 1 and A ∈ R such that E [|X|p] < A for all X ∈ C. (Lp bounded for some p > 1.)
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Homework 46. Let C be a class of random variables of (Ω,F ,P). Then the following condition implies
that C is UI:
∃Y ∈ L1(Ω,F ,P), s.t. ∀X ∈ C we have |X(ω)| ≤ Y (ω). (C is dominated by an integrable (non-negative)

r.v..)
Homework 47. (Infinite Monkey Theorem) Monkey typing random on a typewriter for infinitely time will
type the complete works of Shakespeare eventually.

Tenth homework assignment. Due at 12:15 on 8 December 2016.

Homework 48 (Azuma-Hoeffding Inequality).

(a) Assume that Y is a r.v. which takes values from [−c, c] and E [Y ] = 0 holds. Prove that for all θ ∈ R
we have

E
[
eθY

]
≤ cosh(θc) ≤ exp

(1
2θ

2c2
)
.

Hint: Let f(z) := exp(θz), z ∈ [−c, c]. Then by the convexity of f we have

f(y) ≤ c− y
2c f(−c) + c+ y

2c f(c).

(b) Let M be a martingale with M0 = 0 such that or a sequence of positive numbers {cn}∞n=1 we have
|Mn −Mn−1| ≤ cn, ∀n.

Then the following inequality holds for all x > 0:

P
(

sup
k≤n

Mk ≥ x

)
≤ exp

(
−1

2x
2/

n∑
k=1

c2
k

)
.

This exercise is from the Williams book.
Hint: Use submartingale inequlaity as in the proof of LIL. Then present Mn (in the exponent) like a

telescopic sum, then use the orthogonality of martingale increments. Use part (a), then find the minimum
in θ of the expression in the exponent.
Homework 49 (Exercise for Markov chain CLT). Consider the following Markov chain X = {X}∞n=0:
The state space is Z. The transition probabilities are as follows: p(0, 1) = p(0,−1) = 1

2 . For an arbitrary
x ∈ N+ := N \ {0} we have

p(x, x+ 1) = p(x, 0) = 1
2 , and p(−x,−x− 1) = p(−x, 0) = 1

2 .

(a) Find the stationary measure π for X.
Definitions
• Define the operator P : L1(Z, π) → L1(Z, π) by (Pg)(i) := ∑

j∈Z
p(i, j)g(j) and let I be the identity

on L1(Z, π). Basically P is an infinite matrix and g is an infinite column vector and the action of
the operator P on g is the product of this infinite matrix P with the infinite column vector g like
(P · g)(i), i ∈ Z.

• Let f : Z→ R be an arbitrary function satisfying the following conditions:
∀x ∈ Z, f(x) = −f(−x), and ∃a <

√
2 s.t. f(x) < a|x| for all x large enough.

For example: polynomials of the form f(x) =
n∑
i=1

b2i−1x
2i−1

(b) Construct an U ∈ L2(π) such that ((I − P ) · U)(i) = f(i).

(c) From now on we always assume that f(x) = x−3. Determine

σ2 := Eπ
[
(U(X1)− U(X0) + f(X0))2

]
.

(d) Prove that P (−3σ
√
n ≤ f(X1) + · · ·+ f(Xn) ≤ 3σ

√
n) ≥ 0.99 for sufficiently large n.
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