First homework assignment. Due at 12:15 on 22 September 2016.
Homework 1. We roll two dices. X is the result of one of them and Z the sum of the results. Find $\mathbb{E}[X \mid Z]$.

Homework 2. Let X be a r.v.. Assume that Y another r.v. for which $\mathbb{P}(Y=0$ or $Y=1)=1$. Prove that $Y \in \sigma(X)$ iff there exists a $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ Borel Measurable function such that $Y=\varphi(X)$.

Homework 3. Let X and Y be random variables on the same probability space. Prove that X and Y are independent iff for every $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ bounded measurable functions we have

$$
\mathbb{E}[\varphi(Y) \mid X]=\mathbb{E}[\varphi(Y)]
$$

Homework 4. Assume that X, Y are jointly continuous r.v. with joint distribution function $f(x)$. Prove that

$$
\mathbb{E}[Y \mid X]=\mathbb{E}[Y \mid \sigma(X)]=\frac{\int_{\mathbb{R}} y f(X, y) d y}{\int_{\mathbb{R}} f(X, y) d y} .
$$

Homework 5. Let $Y \in \sigma(\mathcal{G})$. Prove that

$$
\mathbb{E}[X \mid \mathcal{G}] \geq Y \Longleftrightarrow \forall A \in \mathcal{G} \mathbb{E}\left[X \cdot \mathbb{1}_{A}\right] \geq \mathbb{E}\left[Y \cdot \mathbb{1}_{A}\right]
$$

Homework 6. Let $X, Y \in L^{1}(\Omega, \mathcal{F}, \mathbb{P})$ satisfying

$$
\mathbb{E}[X \mid Y]=Y \text { and } \mathbb{E}[Y \mid X]=X
$$

Show that $\mathbb{P}(X=Y)=1$.
Homework 7. Prove the general version of Bayes's formula: Given the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let \mathcal{G} be a sub- σ-algebra of \mathcal{F}. Let $G \in \mathcal{G}$. Show that

$$
\begin{equation*}
\mathbb{P}(G \mid A)=\frac{\int_{G} \mathbb{P}(A \mid \mathcal{G}) d \mathbb{P}}{\int_{\Omega} \mathbb{P}(A \mid \mathcal{G})} d \mathbb{P} \tag{1}
\end{equation*}
$$

Homework 8. Prove the conditional variance formula

$$
\begin{equation*}
\operatorname{Var}(X)=\mathbb{E}[\operatorname{Var}(X \mid Y)]+\operatorname{Var}(\mathbb{E}[\mathrm{X} \mid \mathrm{Y}]) \tag{2}
\end{equation*}
$$

where $\operatorname{Var}(X \mid Y)=\mathbb{E}\left[X^{2} \mid Y\right]-(\mathbb{E}[X \mid Y])^{2}$.
Homework 9. Let X_{1}, X_{2}, \ldots iid r.v. and N is a non-negative integer valued r.v. that is independent of $X_{i}, i \geq 1$. Prove that

$$
\begin{equation*}
\operatorname{Var}\left(\sum_{i=1}^{N} X_{i}\right)=\mathbb{E}[N] \operatorname{Var}(X)+(\mathbb{E}[X])^{2} \operatorname{Var}(N) \tag{3}
\end{equation*}
$$

Second homework assignment. Due at 12:15 on 29 September 2016.
Homework 10. Let X_{t} be a Poisson(1). That is a Poisson process with rate $\lambda=1$. (See Durrett's book p. 139 if you forgot the definition.) Find: $\mathbb{E}\left[X_{1} \mid X_{2}\right]$ and $\mathbb{E}\left[X_{2} \mid X_{1}\right]$.

Homework 11. Construct a martingale which is NOT a Markov chain.
Homework 12. For every $i=1, \ldots, m$ let $\left\{M_{n}^{(i)}\right\}_{n=1}^{\infty}$ be a sequence of martingales w.r.t. $\left\{X_{n}\right\}_{n=1}^{\infty}$. Show that

$$
M_{n}:=\max _{1 \leq i \leq n} M_{n}^{(i)}
$$

is a submartingal w.r.t. $\left\{X_{n}\right\}$.

Homework 13. Let ξ_{1}, ξ_{2}, \ldots standard normal variables. (Recall that in this case the moment generating function $M(\theta)=\mathbb{E}\left[\mathrm{e}^{\theta \xi_{i}}\right]=\mathrm{e}^{\theta^{2} / 2}$.) Let $a, b \in \mathbb{R}$ and

$$
S_{n}:=\sum_{k=1}^{n} \xi_{k} \text { and } X_{n}:=\mathrm{e}^{a S_{n}-b n}
$$

Prove that
(a) $X_{n} \rightarrow 0$ a.s. iff $b>0$
(b) $X_{n} \rightarrow 0$ in L^{r} iff $r<\frac{2 b}{a^{2}}$.

Homework 14. Let $S_{n}:=X_{1}+\cdots+X_{n}$, where X_{1}, X_{2}, \ldots are iid with $X_{1} \sim \operatorname{Exp}(1)$. Verify that

$$
M_{n}:=\frac{n!}{\left(1+S_{n}\right)^{n+1}} \cdot \mathrm{e}^{S_{n}}
$$

is a martingale w.r.t. the natural filtration \mathcal{F}_{n}.
Third homework assignment. Due at 12:15 on 6 October 2016.
Homework 15. Prove that the following two definitions of λ-system \mathcal{L} are equivalent:
Definition 1. (a) $\Omega \in \mathcal{L}$.
(b) If $A, B \in \mathcal{L}$ and $A \subset B$ then $B \backslash A \in \mathcal{L}$
(c) If $A_{n} \in \mathcal{L}$ and $A_{n} \uparrow A$ (that is $A_{n} \subset A_{n+1}$ and $A=\cup_{n=1}^{\infty} A_{n}$) then $A \in \mathcal{L}$.

Definition 2. (i) $\Omega \in \mathcal{L}$.
(ii) If $A \in \mathcal{L}$ then $A^{c} \in \mathcal{L}$.
(iii) If $A_{i} \cap A_{j}=\emptyset, A_{i} \in \mathcal{L}$ then $\cup_{i=1}^{\infty} A_{i} \in \mathcal{L}$.

Homework 16. There are n white and n black balls in an urn. We pull out all of them one-by-one without replacement. Whenever we pull:

- a black ball we have to pay $1 \$$,
- a white ball we receive $1 \$$.

Let $X_{0}:=0$ and X_{i} be the amount we gained or lost after the i-th ball was pulled. We define

$$
Y_{i}:=\frac{X_{i}}{2 n-i}, \text { for } 1 \leq i \leq 2 n-1, \quad \text { and } Z_{i}:=\frac{X_{i}^{2}-(2 n-i)}{(2 n-i)(2 n-i-1)} \text { for } 1 \leq i \leq 2 n-2
$$

(a) Prove that $Y=\left(Y_{i}\right)$ and $Z=\left(Z_{i}\right)$ are martingales.
(b) Find $\operatorname{Var}\left(X_{i}\right)=$?

Homework 17. Let X, Y be two independent $\operatorname{Exp}(\lambda)$ r.v. and $Z:=X+Y$. Show that for any non-negative measurable h we have $\mathbb{E}[h(X) \mid Z]=\frac{1}{Z} \int_{0}^{Z} h(t) d t$.

Homework 18. Let X_{1}, X_{2}, \ldots be iid r.v. with $\mathbb{P}\left(X_{n}=-n^{2}\right)=\frac{1}{n^{2}}$ and $\mathbb{P}\left(X_{n}=\frac{n^{2}}{n^{2}-1}\right)=1-\frac{1}{n^{2}}$. Let $S_{n}:=X_{1}+\cdots+X_{n}$. Show that
(a) $\lim _{n \rightarrow \infty} S_{n} / n=\infty$.
(b) $\left\{S_{n}\right\}$ is a martingale which converges to ∞ a.s..

Homework 19. (This was withdrawn on this week and it is reassigned next week.) A player's winnings per unit stake on game n are ξ_{n}, where $\{\xi\}_{n=1}^{\infty}$ are i.i.d. r.v.

$$
\mathbb{P}\left(\xi_{n}=1\right)=p \text { and } \mathbb{P}\left(\xi_{n}=-1\right)=q:=1-p
$$

where surprisingly, $p \in(1 / 2,1)$, that is $p>q$. That is with probability $q<1 / 2$ the player losses her stake and with probability p she gets back twice of her stake. Let C_{n} be the player's stake on game n. We assume that C_{n} is previsible, that is $C_{n+1} \in \mathcal{F}_{n}:=\sigma\left(\xi_{1}, \ldots, \xi_{n}\right)$ for all n. Further, we assume that $0 \leq C_{n} \leq Y_{n-1}$, where Y_{n-1} is the fortune of the player at time n. We call $\alpha:=p \log p+q \log q+\log 2$ the entropy. Prove that
(a) $\log Z_{n}-n \alpha$ is a supermartingale. This means that the rate of winnings $\mathbb{E}\left[\log Y_{n}-\log Y_{0}\right] \leq n \alpha$
(b) There exists a strategy for which $\log Z_{n}-n \alpha$ is a martingale.

Fourth homework assignment. Due at 12:15 on 13 October 2016.
Homework 20. (Reassigned from last week) A player's winnings per unit stake on game n are ξ_{n}, where $\{\xi\}_{n=1}^{\infty}$ are i.i.d. r.v.

$$
\mathbb{P}\left(\xi_{n}=1\right)=p \text { and } \mathbb{P}\left(\xi_{n}=-1\right)=q:=1-p
$$

where surprisingly, $p \in(1 / 2,1)$, that is $p>q$. That is with probability $q<1 / 2$ the player losses her stake and with probability p she gets back twice of her stake. Let C_{n} be the player's stake on game n. We assume that C_{n} is previsible, that is $C_{n+1} \in \mathcal{F}_{n}:=\sigma\left(\xi_{1}, \ldots, \xi_{n}\right)$ for all n. Further, we assume that $0 \leq C_{n} \leq Y_{n-1}$, where Y_{n-1} is the fortune of the player at time n. We call $\alpha:=p \log p+q \log q+\log 2$ the entropy. Prove that
(a) $\log Y_{n}-n \alpha$ is a supermartingale. This means that the rate of winnings $\mathbb{E}\left[\log Y_{n}-\log Y_{0}\right] \leq n \alpha$
(b) There exists a strategy for which $\log Y_{n}-n \alpha$ is a martingale.

Homework 21. Let \mathbf{X}, \mathbf{Z} be \mathbb{R}^{d}-valued r.v. defined on the $(\Omega, \mathcal{F}, \mathbb{P})$. Assume that $\mathbb{E}\left[\mathrm{e}^{i \mathbf{t} \cdot \mathbf{X}+i \mathbf{s} \cdot \mathbf{Z}}\right]=\mathbb{E}\left[\mathrm{e}^{i \mathbf{t} \mathbf{X}}\right] \cdot \mathbb{E}\left[\mathrm{e}^{i \mathbf{s} \mathbf{Z}}\right], \quad \forall \mathbf{s}, \mathbf{t} \in \mathbb{R}^{n}$. Prove that \mathbf{X}, \mathbf{Z} are independent.
Homework 22. Let $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$ in \mathbb{R}^{n}. Let $\mathbf{X}_{1}:=\left(X_{1}, \ldots, X_{p}\right)$ and $\mathbf{X}_{2}:=\left(X_{p+1}, \ldots, X_{n}\right)$. Let Σ, Σ_{1} and Σ_{2} the covariance matrix of X, X_{1} and X_{2} respectively. Prove that \mathbf{X}_{1} and \mathbf{X}_{2} are independent if and only if

$$
\Sigma=\left(\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & \Sigma_{2}
\end{array}\right)
$$

Homework 23. Let $\mathbf{Y} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$ and let B be a non-singular matrix. Find the distribution of $\mathbf{X}=B \cdot \mathbf{Y}$.
Homework 24. Let $\mathbf{Y} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$ in $\mathbb{R}^{2}, \mathbf{Y}=\left(Y_{1}, Y_{2}\right)$ and let $a_{1}, a_{2} \in \mathbb{R}$. Find the distribution of $a_{1} Y_{1}+a_{2} Y_{2}$.

Fifth homework assignment. Due at 12:15 on 20 October 2016.

Homework 25. Construct a random vector (X, Y) such that both X and Y are one-dimensional normal distributions but (X, Y) is NOT a bivariate normal distribution.

Homework 26. Let $\mathbf{X}=\left(X_{1}, \ldots, X_{d}\right)$ be standard multivariate normal distribution. Let Σ be an $n \times n$ positive semi-definite, symmetric matrix. and let $\boldsymbol{\mu} \in \mathbb{R}^{d}$. Prove that there exists an affine transformation $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, such that $T(\mathbf{X}) \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$.

Homework 27. Let X be the height of the father and Y be the height of the son in sample of father-son pairs. Then (X, Y) is bivariate normal. Assume that

$$
\mathbb{E}[X]=68 \text { (in inches) }, \mathbb{E}[Y]=69, \sigma_{X}=\sigma_{Y}=2, \rho=0.5
$$

where ρ is the correlation of (X, Y). Find the conditional distribution of Y given $X=80$ (6 feet 8 inches). (That is find the parameters in $Y \sim \mathcal{N}\left(\mu_{Y}, \sigma^{2}(Y)\right)$.)

Homework 28 (Extension of part (iii) of Doob's optional stopping Theorem). Let X be a supermartingale. Let T be a stopping time with $\mathbb{E}[T]<\infty$.(Like in part (iii) of Doob's optional stopping Theorem.) Assume that there is a C such that

$$
\mathbb{E}\left[\left|X_{k}-X_{k-1}\right| \mid \mathcal{F}_{k-1}\right](\omega) \leq C, \quad \forall k>0 \text { and for a.e. } \omega .
$$

Prove that $\mathbb{E}\left[X_{T}\right] \leq \mathbb{E}\left[X_{0}\right]$.
Homework 29. Let X_{n} be a discrete time birth-death process with probabilities with transition probabilities

$$
p(i, i+1)=p_{i}, p(i, i-1)=1-p_{i}=: q_{i}, p_{0}=1
$$

We define the following function:

$$
g: \mathbb{N} \rightarrow \mathbb{R}^{+}, \quad g(k):=1+\sum_{j=1}^{k-1} \prod_{i=1}^{j} \frac{q_{i}}{p_{i}}
$$

(a) Prove that $Z_{n}:=g\left(X_{n}\right)$ is a martingale for the natural filtration.
(b) Let $0<i<n$ be fixed. Find the probability that a process started from i gets to n earlier than to 0 .

Sixth homework assignment. Due at 12:15 on 3 November 2016.

Homework 30. Let $\left\{\varepsilon_{n}\right\}$ be an iid sequence of real numbers satisfying $\mathbb{P}\left(\varepsilon_{n}= \pm 1\right)=\frac{1}{2}$. Show that $\sum_{n} \varepsilon_{n} a_{n}$ converges alsmost surely iff $\sum_{k=1}^{\infty} a_{n}^{2}<\infty$.

Homework 31. Let $X=\left(X_{n}\right)$ be an L^{2} random walk that is a martingale. Let σ^{2} be the variance of the k-th increment $Z_{k}:=X_{k}-X_{k-1}$ for all k. Prove that the quadratic variance is $A_{n}=n \sigma^{2}$.

Homework 32. Prove the assertion of Remark 5.6 from File C.
Homework 33. Let $M=\left(M_{n}\right)$ be a martingale with $M_{0}=0$ and $\left|M_{k}-M_{k-1}\right|<C$ for a $C \in \mathbb{R}$. Let $T \geq 0$ be a stopping time and we assume that $\mathbb{E}[T] \leq \infty$. Let

$$
\begin{aligned}
& U_{n}:=\sum_{k=1}^{n}\left(M_{k}-M_{k-1}\right)^{2} \cdot \mathbb{1}_{T \geq k}, \quad V_{n}:=2 \sum_{1 \leq i<j \leq n}\left(M_{i}-M_{i-1}\right) \cdot\left(M_{j}-M_{j-1}\right) \cdot \mathbb{1}_{T \geq j} . \\
& U_{\infty}:=\sum_{k=1}^{\infty}\left(M_{k}-M_{k-1}\right)^{2} \cdot \mathbb{1}_{T \geq k}, \quad V_{\infty}:=2 \sum_{1 \leq i<j}\left(M_{i}-M_{i-1}\right) \cdot\left(M_{j}-M_{j-1}\right) \cdot \mathbb{1}_{T \geq j} . \text { Prove that }
\end{aligned}
$$

(a) $M_{T \wedge n}^{2}=U_{n}+V_{n}$ and $M_{T}^{2}=U_{\infty}+V_{\infty}$.
(b) Further, if $\mathbb{E}\left[T^{2}\right]<\infty$ then $\lim _{n \rightarrow \infty} U_{n}=U_{\infty}$ a.s. and $\mathbb{E}\left[U_{\infty}\right]<\infty$ and $\mathbb{E}\left[V_{n}\right]=\mathbb{E}\left[V_{\infty}\right]=0$.
(c) Conclude that $\lim _{n \rightarrow \infty} \mathbb{E}\left[M_{T \wedge n}^{2}\right]=\mathbb{E}\left[M_{T}^{2}\right]$.

Homework 34 (Wald equalities). Let Y_{1}, Y_{2}, \ldots be iid r.v. with $Y_{i} \in L^{1}$. Let $S_{n}:=Y_{1}+\cdots+Y_{n}$ and we write $\mu:=\mathbb{E}\left[Y_{i}\right]$. Given a stopping time $T \geq 1$ satisfying: $\mathbb{E}[T]<\infty$. Prove that

$$
\begin{equation*}
\mathbb{E}\left[S_{T}\right]=\mu \cdot \mathbb{E}[T] \tag{4}
\end{equation*}
$$

(b) Further, assume that Y_{i} are bounded $\left(\exists C_{i} \in \mathbb{R}\right.$ s.t. $\left.\left|Y_{i}\right|<C_{i}\right)$ and $\mathbb{E}\left[T^{2}\right]<\infty$. We write $\sigma^{2}:=\operatorname{Var}\left(Y_{i}\right)$. Then

$$
\begin{equation*}
\mathbb{E}\left[\left(S_{T}-\mu T\right)^{2}\right]=\sigma^{2} \cdot \mathbb{E}[T] \tag{5}
\end{equation*}
$$

Hint: Introduce an appropriate martingale and apply the result of the previous exercise.

Sevens homework assignment. Due at 12:15 on 10 November 2016.

Homework 35 (Branching Processes). You might want to recall what you have learned about Bransching Processes. (See File C of the course "Stochastic Processes".) A Branching Process $Z=\left(Z_{n}\right)_{n=0}^{\infty}$ is defined recursively by a given family of \mathbb{Z}^{+}valued iid rv. $\left\{X_{k}^{(n)}\right\}_{k, n=1}^{\infty}$ as follows:

$$
Z_{0}:=1, \quad Z_{n+1}:=X_{1}^{(n+1)}+\cdots+X_{Z_{n}}^{(n+1)}, \quad n \geq 0
$$

Let $\mu=\mathbb{E}\left[X_{k}^{(n)}\right]$ and $\mathcal{F}_{n}=\sigma\left(Z_{0}, Z_{1}, \ldots Z_{n}\right)$. We write $f(s)$ for the generating function. that is

$$
f(s)=\sum_{\ell=0}^{\infty} \underbrace{\mathbb{P}\left(X_{k}^{(n)}=\ell\right)}_{p_{\ell}} \cdot s^{\ell} \text { for any } k, n
$$

Further, let

$$
\{\text { extinction }\}:=\left\{Z_{n} \rightarrow 0\right\}=\left\{\exists n, Z_{n}=0\right\} \quad\{\text { explosion }\}=\left\{Z_{n} \rightarrow \infty\right\}
$$

let $q:=\mathbb{P}([$ extinction $]):=$. Recall that we learned that q is the smaller (if there are two) fixed point of $f(s)$. That is q is the smallest solution of $f(q)=q$. Prove that
(a) $\mathbb{E}\left[Z_{n}\right]=\mu^{n}$. Hint: Use induction.
(b) For every $s \geq 0$ we have $\mathbb{E}\left[s^{Z_{n+1}} \mid \mathcal{F}_{n}\right]=f(s)^{Z_{n}}$. Explain why it is true that $q^{Z_{n}}$ is a martingale and $\lim _{n \rightarrow \infty} Z_{n}=Z_{\infty}$ exists a.s.
(c) Let $T:=\min \left\{n: Z_{n}=0\right\} .\left(T=\infty\right.$ if $Z_{n}>0$ always.)
(d) Prove that $q=\mathbb{E}\left[q^{Z_{T}}\right]=\mathbb{E}\left[q^{Z_{\infty}} \cdot \mathbb{1}_{T=\infty}\right]+\mathbb{E}\left[q^{Z_{T}} \cdot \mathbb{1}_{T<\infty}\right]$.
(e) Prove that $\mathbb{E}\left[q^{Z_{\infty}} \cdot \mathbb{1}_{T=\infty}\right]=0$.
(f) Conclude that if $T(\omega)=\infty$ then $Z_{\infty}=\infty$.
(g) Prove that

$$
\begin{equation*}
\mathbb{P}(\text { extinction })+\mathbb{P}(\text { explosion })=1 \tag{6}
\end{equation*}
$$

Homework 36 (Branching Processes cont.). Here we assume that

$$
\mu=\mathbb{E}\left[X_{k}^{(n)}\right]<\infty \text { and } 0<\sigma^{2}:=\operatorname{Var}\left(X_{k}^{(n)}\right)<\infty
$$

Prove that
(a) $M_{n}=Z_{n} / \mu^{n}$ is a martingale for the natural filtration \mathcal{F}_{n}
(b) $\mathbb{E}\left[Z_{n+1}^{2} \mid \mathcal{F}_{n}\right]=\mu^{2} Z_{n}^{2}+\sigma^{2} Z_{n}$. Conclude that

$$
M \text { is bounded in } L^{2} \Longleftrightarrow \mu>1
$$

(c) If $\mu>1$ then $M_{\infty}:=\lim _{n \rightarrow \infty} M_{n}$ exists (in L^{2} and a.s.) and

$$
\operatorname{Var}\left(M_{\infty}\right)=\frac{\sigma^{2}}{\mu(\mu-1)}
$$

Homework 37 (Branching Processes cont.). Assume that $q=1$ (q was defined in the one but last exercise as the probability of extinction). Prove that $M_{n}=Z_{n} / \mu^{n}$ is NOT a UI martingale.

Eights homework assignment. Due at 12:15 on 24 November 2016.

Homework 38. Let X_{1}, X_{2}, \ldots be iid rv. with continuous distribution distribution function. Let E_{i} be the event that a record occurs at time n. That is $E_{1}:=\Omega$ and $E_{n}:=\left\{X_{n}>X_{m}, \forall m<n\right\}$. Prove that $\left\{E_{i}\right\}_{i=1}^{\infty}$ independent and $\mathbb{P}\left(E_{i}\right)=\frac{1}{i}$.
Homework 39 (Continuation). Let E_{1}, E_{2}, \ldots be independent with $\mathbb{P}\left(E_{i}\right)=1 / i$. Let $Y_{i}:=\mathbb{1}_{E_{i}}$ and $N_{n}:=Y_{1}+\cdots+Y_{n}$. (In the special case of the previous homework, N_{n} is the number of records until time n.) Prove that
(a) $\sum_{k=1}^{\infty} \frac{Y_{k}-1 / k}{\log k}$ converges almost surely.
(b) Using Krocker's Lemma conclude that $\lim _{n \rightarrow \infty} \frac{N_{n}}{\log n}=1$ a.s..
(c) Apply this to the situation of the previous exercise to get an estimate on the number of records until time n.

Homework 40. Let \mathcal{C} be a class of rv on $(\Omega, \mathcal{F}, \mathbb{P})$. Prove that the following assertions (1) and (2) are equivalent:

1. \mathcal{C} is UI.
2. Both of the following two conditions hold:
(a) \mathcal{C} is L^{1}-bounded. That is $A:=\sup \{\mathbb{E}[|X|]: X \in \mathcal{C}\}<\infty$ AND
(b) $\forall \varepsilon>0, \exists \delta>0$ s.t.

$$
F \in \mathcal{F} \text { and } \mathbb{P}(F)<\delta \Longrightarrow \mathbb{E}[|X| ; F]<\varepsilon
$$

Homework 41. Let \mathcal{C} and \mathcal{D} be UI classes of rv.. Prove that $\mathcal{C}+\mathcal{D}:=\{X+Y: X \in \mathcal{C}$ and $Y \in \mathcal{D}\}$ is also UI. Hint: use the previous exercise.

Homework 42. Let \mathcal{C} be a UI family of rv.. Let us define
$\mathcal{D}:=\{Y: \exists X \in \mathcal{C}, \exists \mathcal{G}$ sub- σ-algebra of \mathcal{F} s.t. $Y=\mathbb{E}[X \mid \mathcal{G}]\}$. Prove that \mathcal{D} is also UI.
Ninth homework assignment. Due at 12:15 on 1 December 2016.
Homework 43. Let X_{1}, X_{2}, \ldots be iid. rv. with $\mathbb{E}\left[X^{+}\right]=\infty$ and $\mathbb{E}\left[X^{-}\right]<\infty$. (Recall $X=X^{+}-X^{-}$ and $X^{+}, X^{-} \geq 0$.) Use SLLN to prove that $S_{n} / n \rightarrow \infty$ a.s., where $S_{n}:=X_{1}+\cdots+X_{n}$. Hint: For an $M>0$ let $X_{i}^{M}:=X_{i} \wedge M$ and $S_{n}^{M}:=X_{n}^{M}+\cdots+X_{n}^{M}$. Explain why $\lim _{n \rightarrow \infty} S_{n}^{M} / n \rightarrow \mathbb{E}\left[X_{i}^{M}\right]$ and $\liminf _{n \rightarrow \infty} S_{n} / n \geq \lim _{n \rightarrow \infty} S_{n}^{M} / n$.

Homework 44. Let X_{1}, X_{2}, \ldots be iid rv with $\mathbb{E}\left[\left|X_{i}\right|\right]<\infty$. Prove that $\mathbb{E}\left[X_{1} \mid S_{n}\right]=S_{n} / n$. (This is trivial intuitively from symmetry, but prove it with formulas.)

Homework 45. Let \mathcal{C} be a class of random variables of $(\Omega, \mathcal{F}, \mathbb{P})$. Then the following condition implies that \mathcal{C} is UI:

If $\exists p>1$ and $A \in \mathbb{R}$ such that $\mathbb{E}\left[|X|^{p}\right]<A$ for all $X \in \mathcal{C} .\left(L^{p}\right.$ bounded for some $p>1$.)

Homework 46. Let \mathcal{C} be a class of random variables of $(\Omega, \mathcal{F}, \mathbb{P})$. Then the following condition implies that \mathcal{C} is UI:
$\exists Y \in L^{1}(\Omega, \mathcal{F}, \mathbb{P})$, s.t. $\forall X \in \mathcal{C}$ we have $|X(\omega)| \leq Y(\omega) .(\mathcal{C}$ is dominated by an integrable (non-negative) r.v..)

Homework 47. (Infinite Monkey Theorem) Monkey typing random on a typewriter for infinitely time will type the complete works of Shakespeare eventually.

Tenth homework assignment. Due at 12:15 on 8 December 2016.
Homework 48 (Azuma-Hoeffding Inequality).
(a) Assume that Y is a r.v. which takes values from $[-c, c]$ and $\mathbb{E}[Y]=0$ holds. Prove that for all $\theta \in \mathbb{R}$ we have

$$
\mathbb{E}\left[\mathrm{e}^{\theta Y}\right] \leq \cosh (\theta c) \leq \exp \left(\frac{1}{2} \theta^{2} c^{2}\right)
$$

Hint: Let $f(z):=\exp (\theta z), z \in[-c, c]$. Then by the convexity of f we have

$$
f(y) \leq \frac{c-y}{2 c} f(-c)+\frac{c+y}{2 c} f(c) .
$$

(b) Let M be a martingale with $M_{0}=0$ such that or a sequence of positive numbers $\left\{c_{n}\right\}_{n=1}^{\infty}$ we have

$$
\left|M_{n}-M_{n-1}\right| \leq c_{n}, \quad \forall n
$$

Then the following inequality holds for all $x>0$:

$$
\mathbb{P}\left(\sup _{k \leq n} M_{k} \geq x\right) \leq \exp \left(-\frac{1}{2} x^{2} / \sum_{k=1}^{n} c_{k}^{2}\right)
$$

This exercise is from the Williams book.
Hint: Use submartingale inequlaity as in the proof of LIL. Then present M_{n} (in the exponent) like a telescopic sum, then use the orthogonality of martingale increments. Use part (a), then find the minimum in θ of the expression in the exponent.
Homework 49 (Exercise for Markov chain CLT). Consider the following Markov chain $X=\{X\}_{n=0}^{\infty}$: The state space is \mathbb{Z}. The transition probabilities are as follows: $p(0,1)=p(0,-1)=\frac{1}{2}$. For an arbitrary $x \in \mathbb{N}^{+}:=\mathbb{N} \backslash\{0\}$ we have

$$
p(x, x+1)=p(x, 0)=\frac{1}{2}, \text { and } p(-x,-x-1)=p(-x, 0)=\frac{1}{2} .
$$

(a) Find the stationary measure π for X.

Definitions

- Define the operator $P: L^{1}(\mathbb{Z}, \pi) \rightarrow L^{1}(\mathbb{Z}, \pi)$ by $(P g)(i):=\sum_{j \in \mathbb{Z}} p(i, j) g(j)$ and let I be the identity on $L^{1}(\mathbb{Z}, \pi)$. Basically P is an infinite matrix and g is an infinite column vector and the action of the operator P on g is the product of this infinite matrix P with the infinite column vector g like $(P \cdot g)(i), i \in \mathbb{Z}$.
- Let $f: \mathbb{Z} \rightarrow \mathbb{R}$ be an arbitrary function satisfying the following conditions:

$$
\forall x \in \mathbb{Z}, f(x)=-f(-x), \text { and } \exists a<\sqrt{2} \text { s.t. } f(x)<a^{|x|} \text { for all } x \text { large enough. }
$$

For example: polynomials of the form $f(x)=\sum_{i=1}^{n} b_{2 i-1} x^{2 i-1}$
(b) Construct an $U \in L^{2}(\pi)$ such that $((I-P) \cdot U)(i)=f(i)$.
(c) From now on we always assume that $f(x)=x^{-3}$. Determine

$$
\sigma^{2}:=\mathbb{E}_{\pi}\left[\left(U\left(X_{1}\right)-U\left(X_{0}\right)+f\left(X_{0}\right)\right)^{2}\right]
$$

(d) Prove that $\mathbb{P}\left(-3 \sigma \sqrt{n} \leq f\left(X_{1}\right)+\cdots+f\left(X_{n}\right) \leq 3 \sigma \sqrt{n}\right) \geq 0.99$ for sufficiently large n.

